高温加熱を受けたコンクリート の残存圧縮強度の推定方法

李 柱国 —— *1 李 慶濤 —— *2

キーワード :

コンクリート、高温加熱、熱伝導率、残存圧縮強度、推定法

Keywords:

Concrete, High temperature, Thermal conductivity, Residual strength, Estimation

ESTIMATING METHOD OF RESIDUAL COMPRESSIVE STRENGTH OF HEATED CONCRETE

Zhuguo LI ------ * 1 Qingtao LI ------ * 2

In this study, a new simple method was firstly developed for measuring the thermal conductivity of concrete. Then we measured the residual compressive strength and thermal conductivity of a series of specimens after heated at different high temperature levels, which were produced with different raw materials and had different strength grades, and examined the relationship between thermal conductivity and heating temperature. Furthermore, the relationship between residual compressive strength and thermal conductivity is quantitatively discussed and modeled. Based on this model, we proposed a method for estimating the compressive strength distribution in heated concrete member.

1. はじめに

コンクリートは、火災の高温加熱を受けると、セメント水和物が 化学的に変質し、遊離水と結晶水の脱水によってセメントペースト 部は収縮するが、骨材は膨張するという相反する挙動を示す。この 成分変質、膨張および収縮によって、内部組織が破壊され、表面に ひび割れを多く生ずるため、強度および弾性などの力学的性質^{1,2)} が低下する(図1参照)。強度レベルが高くなるにつれて残存圧縮強 度が低くなる傾向が確認されている³⁾。

また、ひび割れの発生より、塩化物イオン、炭酸ガス、酸素およ び水などの浸透性が増大する^{4,5)}。500℃を越えるあたりから、コン クリート中の水酸化カルシウムが熱分解することより中性化する⁶⁾。 これによって、鉄筋腐食に対する抵抗力は低下し、鉄筋コンクリー トの耐久性は著しく低下する。

火災の高温によって劣化したコンクリートの性能は、火災後の経過 時間の増加に伴って若干回復する傾向が見られるものの、火災前の水 準までの回復が期待できない^{7),8)}。したがって、火災後の鉄筋コンク リート部材の残存耐力推定および補修・補強は非常に重要である。日 本建築学会は、火災後の鉄筋コンクリート構造物の調査・診断と補修・ 補強方法を提案した⁹⁾。鉄筋コンクリート部材の残存耐力の推定は、 部材の構成材料(コンクリート、鉄筋)の残存強度を部材断面について 積分することにより行われる。この推定を遂行するために、部材断面 に沿った深さ方向の残存強度の変化を調査することが必要となる。

現在、コンクリートの残存強度の信頼できる評価方法は、火害部か ら採取したコア供試体を用いて直接に圧縮試験を測定することである。 しかし、実際には、コンクリート表面からの深さによって劣化程度が 異なるため、採取したコアで評価すると、コアの長さ全体の圧縮強度 を評価することになる。異なる深さでコアを採取すれば、残存強度の 分布を測定することが可能である。しかし、通常の¢100mm×200mm コアは長い。直径が25mm 程度の小径コアを使っても、50mmの深さ まで採取しなければならない。また、500℃以上の高温を受けたコンク リートの強度は低いため、採取した小径コアが壊れやすく、採取時の 機械外力によってコアがひび割れを生じる。したがって、現在の方法 で残存強度の分布を詳細に測定することは難しいと思われる。

一方、コンクリートは、高温を受けると、強度が低下する同時に、 熱伝導率も減少する³⁾。図1と図2に示すように、コンクリートの 強度等級および使用材料が異なっても、圧縮強度と熱伝導率の減少 傾向は殆ど変わらない。これらの結果は、熱伝導率と残存圧縮強度 の関連性を示唆している。

したがって、本研究では、まず、コンクリートのコアに適用する熱伝 導率の測定方法を開発する。次に、異なる原材料で練り混ぜたコンクリ ートの圧縮強度と熱伝導率の供試体を加熱して、その残存圧縮強度、熱 伝導率と加熱温度の関係をそれぞれ考察し、残存圧縮強度と熱伝導率の 関係を検討した上で両者の関係モデルを提案する。さらに、熱伝導率の 測定値による火災後の残存圧縮強度分布の推定方法を提案する。

2. コンクリートの熱伝導率の測定方法

既存の熱伝導率の測定方法は様々であるが、保護熱板法(GHP 法)、熱線法等が代表的である。特に GHP 法は標準的な測定方 法として位置付けられている。さらに、熱線法は、熱伝導率を 直接測定できるため、比較的頻繁に使用されている。

GHP 法の原理は簡単であるが、装置の構成と制御は非常に複 雑になっている(図3参照)。また、GHP 法の供試体は、一般 に正方形の板であり、寸法が300×300×15~30mm 又は200× 200×15~30mm である¹¹⁾。通常の円筒コアドリルで採取した

1 山口大学大学院理工学研究科 准教授

(〒755-8611 山口県宇部市常盤台 2-16-1)

山口大学大学院理工学研究科 博士課程後期院生

^{*1} Assoc. Prof., Graduate School of Science and Eng., Yamaguchi Univ.

²² Graduate Student, Graduate School of Science and Eng., Yamaguchi Univ.

コンクリートコアを使う供試体の準備作業には非常な手間を要する。

一方、熱線法では、ヒータ(熱線)の発熱量と温度上昇量から、熱 伝導率を直接測定できるが、供試体の比較的小さな部分だけがヒー タによって加熱されるため、求めた熱伝導率は試料表層の組成と構 造のみに対応したものである。したがって、この方法は積層複合材 と非均質材料には適用し難い。例えば図4に示すように、2枚の供 試体の間には測定位置によって、熱線法で測定したコンクリートの 熱伝導率がかなり異なっていることがわかる。

2.1 測定装置

上記に述べた熱伝導率測定方法の現状を踏まえて、本研究では GHP 法に準拠した、簡易な熱伝導率測定装置を試作した。測定装置の 構成を図5に示す。なお、室温測定の場合には電気炉を使用しない。

この装置は、2枚のニッケル鋼板、3枚のホットプレート、3個の 温度コントローラー、3つの直流安定化電源(出力電圧:0~30V、 出力電流:0~1.5A)、デジタルマルチメータ、断熱材、デジタルひ ずみ測定器およびパソコンで構成される。

2枚のニッケル鋼板は正方形であり、サイズが300×300×5.5mmである。鋼板を長ステンレスねじ棒できつく繋ぐため、摩擦力によって供試体とホットプレートは持ち上げられる。デジタルトルクレンチで一定のトルク(30N/・m)を加えてナットで長ねじ棒を締めるため、供試体とホットプレートの接触の緊密程度が、各実験は同じであった。

3枚のホットプレートは、サイズが直径 100mm×厚さ 12mmの円 板であり、110Vの交流電源を使うときの出力が 300W である。ホッ トプレートには、1 点の K型熱電対が取り付けられている。ここに、 2 枚の供試体の間に決まれるホットプレートを高温ホットプレート と、鋼板と供試体の間に設置されるホットプレートを低温ホットプ レートと呼ぶことにする。ホットプレートを直流安定化電源に接続 し、取り付けられた K型熱電対を卓上型温度調節器に接続する。温 度調節器は、ホットプレートの温度によって、直流安定化電源に電 力供給を On/Off する。予備実験によって、ホットプレートの平面内 の温度分布が均一であることを確認した。

熱電対とデジタルひずみ測定器は、ホットプレートの温度をモー タリングするために使われる。高温ホットプレートの電流と電圧を デジタルマルチメータとパソコンによってモータリングする。

なお、図5に示すように、20℃時の熱伝導率が0.04W/m・Kである断熱材(カオウールブランケット)を、供試体とホットプレートの外周に巻き付け、供試体とホットプレートの外周からの熱流出を防止するようにしている。断熱層が厚いほど、熱流出が測定結果に与える影響は小さい。本研究では断熱層の厚さを10cmとした。

この装置を利用して、加熱を受けたコンクリートの25℃と110℃の熱伝導率を測定した。測定温度が110℃の場合には、電気炉を用いた。使用した電気炉の内炉寸法は、内径445mm×高さ340mmであり、最高加熱温度は1300℃である。

2.2 測定方法

ニッケル鋼板、供試体およびホットプレートを図5に示すように 設置し、断熱材を供試体とホットプレートの外周に巻き付け、熱電 対とホットプレートの電源ケーブルをそれぞれ制御機器や測定機器 に接続する。110℃測定をする場合には、図5に示すように制御機器 と測定機器以外の部分を電気炉内に設置する。

次に、110℃測定の場合には電気炉を作動させて、炉内温度を95℃

①主熱板 ②保護熱板 ③低温側ヒータ ④補償ヒータ
 ⑤試験体 ⑥断熱材1 ⑦断熱材2 ⑧断熱材3 ⑨水冷タンク
 ⑩円筒ヒータ ⑪ベルジャー ⑫断熱材 ⑬SUS板 ⑭熱電対
 図 3 GHP 法による測定装置構成の例 ¹⁰

20℃の熱伝導率の測定結果:①-1.54、②-3.04、③-2.02 W/m・K 図4 コンクリートの常温熱伝導率の熱線法による測定結果に 及ぼす測定位置の影響

に保持した。供試体とホットプレートの温度は95℃に達した後、各 ホットプレートに通電して温度調節器の制御によって設定温度を保 持した。低温と高温ホットプレートの恒温温度はそれぞれ 100℃と 120℃であった。 ー方、25℃の熱伝導率の測定は、実験室の 温度を10℃に下げ、低温ホットプレートと高 温ホットプレートの恒温温度をそれぞれ 20℃と30℃とした。

低温ホットプレートの設定温度は、温度調 節器の制御による直流安定化電源のOn/Offで 保持される。しかし、高温ホットプレートの 発熱量を計算するために、電流を安定になる 必要がある。したがって、電源のOn/Offで温 度を制御することではなく、電圧と電流を適 切に設定することによって高温ホットプレー

トの設定温度を保持させた。供試体の熱伝導率が大きいほど、安定 電流は大きい。高温ホットプレートの直流安定化電源の電流設定ツ マミを回して、試行錯誤で持続的に加熱する安定電流を選定した。

低温と高温ホットプレートがともに設定温度に達して安定し、かつ 高温ホットプレートへの電流が持続する状態になると、供試体中の熱 の流れは定常状態になると考えられる。熱の流れは非定常状態から定 常状態になると、供試体中の位置にかかわらず温度勾配が同等であり、 入熱と出熱が等しく、供試体の平均温度は時間とともに変わらない。

ホットプレートと供試体の周辺からの熱流出がない場合に、熱伝 導は一次元のものと見なされることができ、単位時間に供試体中を 流れる熱量*Q*(W) は、フーリエの法則によって式(1)で表される¹²。

$$Q = k \cdot A \cdot \frac{\Delta T}{s} \tag{1}$$

ここに、k:供試体の熱伝導率(W/m・K)、A:供試体の面積(m²)、ΔT: 供試体両側の温度差(K)、s:供試体の厚さ(m)

供試体両側の温度差Δ*I*は、高温と低温ホットプレートの温度差に等 しい。また、高温ホットプレートの発熱量は、電圧 *U*(ホットプレー トのリード線の影響分を除いたもの)と電流 *I*の積であり、2 枚の供 試体に伝わる。したがって、供試体の熱伝導率は、式(2)によって求 められる。

k _	$U\cdot I\cdot s$	(9	2
κ —	$\overline{2A\cdot\Delta T}$	(2	'

しかし、図5に示す測定方法では、ホットプレートと供試体の周辺に断熱層を施して熱の流出を極力防止しようとしても、ホットプレートと供試体の周辺からの熱流出を完全に阻止できない。したがって、測定結果は、厳密に言えば、真の熱伝導率ではないと考えられるが、ここでは熱線法による測定値をko、本報の方法による測定値をkoと表すこととする。

3. コンクリート供試体と性能測定

3.1 供試体の作製と養生

コンクリートの調合と主要性能を表1に示す。使用材料には普通 ポルトランドセメントおよびポリカルボン酸 AE 減水剤の他、3 種 類の骨材を用い、3 調合とした。骨材の品質を表2に示す。骨材の 材質によって、コンクリートの熱伝導特性および力学特性は異なる と考えられる。骨材の種類が、加熱されたコンクリートの残存強度 と熱伝導特性の関係に与える影響を検討するために、使用した骨材 の種類を変えさせた。しかし、入手できた骨材の最大寸法を統一す ることができなかった。

表1 コンクリートの調合と主要性能

	W/C			粗 骨 材	尚位 / (kg/m ³)					主要性能			
Sorias		S/a	細骨材			中位.))里貝	kg/III)		CI	亦乞旱	28 日圧縮強 度(MPa)	
Series	(%)	(%)	の種類	の種類	W	С	S	G	S_p (C×%)	(cm)	空风里 (%)		
C1	50	40	石灰岩砕砂	石灰岩 砕石	170	340	730	1042	0.7	20	5	30.5	
C2	50	42	硬質砂岩 砕砂	石灰岩 砕石	170	340	754	1002	0.7	9.5	5.5	56.1	
C3	41	42	海砂	硬質砂岩 砕石	170	415	697	1035	0.7	19	6.8	38.4	
N													

注: W/C: 水セメント比、S/a: 細骨材率、F_v:ポリエチレン繊維の添加率(コンクリートとの体 積比)、W, C, S, G, S_p: それぞれ水,セメント,海砂,砕石および AE 減水剤、Sl.: スランプ

表2 骨材の品質

傦	種類	最大寸	実積	粗粒	表乾密度	吸水率	単位容積質
材	112.75	法(mm)	率(%)	率	(g/cm^3)	(%)	量(kg/m ³)
粗	石灰岩砕石	13	63.1	6.39	2.602	1.21	1622
宵 材	硬質砂岩砕石	25	59.5	6.67	2.73	0.40	1620
細骨材	石灰岩砕砂	5	64.6	2.43	2.69	0.52	1730
	硬質砂岩砕砂*	2.5	66.0	2.73	2.65	1.45	1724
	海砂	5	64.9	2.57	2.59	1.65	1660

注:* 硬質砂岩砕砂の 0.3mm 以下の微粉含量は 14% であった

コンクリートを容量 100L の強制型ミキサで練り混ぜた直後に、 スランプを測定し、圧縮強度測定用供試体を JIS A 1108:2006 に準 拠して作製した。圧縮強度の供験体は、直径 100mm×高さ 200mm 円柱体であった。また、試作した型枠を用いて、直径×厚さが 100mm ×30mm である熱伝導率測定用供試体(円板)を作製した。供試体 を作製するための締め固めは、振動台で行い、2 種の供試体は同じ 振動時間とした。供試体は、24 時間で脱型し、20±2℃の標準水中 養生を 28 日間行った。その後、円柱供試体の載荷面と円板の両面を 研磨仕上げし、加熱まで室内に 2 ヶ月保管した。また、材齢 28 日に おいて圧縮強度試験を実施し、その結果を表1に示す。

3.2 供試体の加熱と冷却

供試体の加熱は、マイコン付き電気炉を使用した。加熱時の供試 体は、加熱中に水分逸散を認めるアンシール状態とした。加熱速度 は、5℃/分とした。計画加熱温度は、それぞれ150℃、300℃、400℃、 500℃、600℃および700℃の6水準であった。電気炉の温度は、計 画加熱温度に到達した後、供試体の内部温度も計画加熱温度に達す るように6~11時間保持した。加熱直後に、供試体を電気炉から出 して室内にて自然冷却した。

3.3 強度と熱伝導率の測定

円柱と円板供試体を加熱し、室温まで降温してから 5~12 時間後、 常温下で圧縮強度(*F*_c)を測定した。また、熱線法によって加熱した円 柱供試体の底面において熱伝導率(*k*)を測定し、3 体の平均値を取った。

なお、第2章に述べた方法で、加熱後のコンクリートの熱伝導率 を測定した。測定する前に、含水量の影響を無くすために、105℃の 乾燥箱で24時間乾燥し、密閉容器に室温まで冷却した。

コンクリートの強度と熱伝導率は、その緻密性に大きく依存する。 緻密であるほど、強度と熱伝導率は共に大きくなる。また、含水率 は、コンクリートの熱伝導率に大きな影響を与え、含水率が大きい ほど、その値は大となる¹³⁾。しかし、含水率が大きくなると、コン クリートの圧縮強度は低下する¹⁴⁾。すなわち、含水率の変動による 強度と熱伝導率の変化傾向は相反する。本研究で対象とする残存圧 縮強度の推定法は、コンクリートの熱伝導率を測定し、熱伝導率と 圧縮強度との相関関係から残存圧縮強度を算出する。このため、熱 伝導率と圧縮強度のより密接な相関関係を得るために、含水率の影 響およびこの影響を排除する実験方法の検討が必要である。

コンクリートの供試体が絶乾状態になるまでの乾燥時間は供試体 によって異なり、絶乾状態になるかどうかについての判断は容易で はない。また、物質が熱分解しないかぎり、熱伝導率の測定温度が 高いほど、絶乾状態のコンクリートの熱伝導率は大きいと考えられ る。したがって、本研究では、25℃だけではなく、110℃の熱伝導率 (*k**)の測定を試みた。110℃の*k**を測定する過程においては供試 体の内部自由水が蒸発する。熱の流れが定常状態になったら、自由 水の蒸発はほぼ完了し、供試体が絶乾状態になると思われる。*k**の 測定時間は、供試体によって異なるが、25℃と 110℃の測定にはそ れぞれ約4時間と6時間を要した。

4. 測定結果および考察

3 シリーズのコンクリートの残存圧縮強度と熱伝導率の測定結果 を表3に示す。また、図6に示すように、コンクリートの残存圧縮 強度 F_cは、加熱前の強度等級と使用した骨材の種類にかかわらず、 既往の結果と同様²⁾、加熱温度の増加につれて減少した。

図 7 に k₀および k*と加熱温度との関係を示す。同図より、k は、 既存の知見 ⁵⁾どおり、加熱温度の増加に伴って減少し。一方、k*は、 測定温度に拘わらず、加熱温度の増加に伴って減少する傾向が見ら れた。k*の減少は、加熱温度 300℃まで緩やかであったが、500℃以 上で、急激な減少を示した。火災時に、コンクリート部材の内部の 受熱温度は深さの増加につれて低くなる。したがって、k*と深さの 関係曲線より、コンクリートの火害の深さを推定できると思われる。

図6 コンクリートの残存圧縮強度と加熱温度の関係

k*の加熱温度に伴い減少する傾向は、加熱前の強度等級と使用材 料によって大きな違いが見られなかった。**k***の測定値は、k₀より小 さく、調合による差異がはっきり見られた。また、25℃の**k***は110℃ より小さいことが認められた。調合の種類によって**k***の測定値に差 異が認められた理由として、骨材の種類や骨材量および硬化コンク リート内部の空隙量の違いなどが影響しているものと推察される。

コンクリートの加熱後の残存圧縮強度と k_0 、 k^* との関係をそれぞれ図8に示す。この図によれば、 k^* が大きいほど、残存圧縮強度は大きい。しかし、 k_0 では、約2.0W/m・Kを超えると、残存強度はあまり変わらない傾向が見られた。つまり熱線法により測定した熱伝導率と残存強度の関係は低温加熱域においては相関が低いと言える。

また、残存強度の対数と k₀, k*の関係を図9に示す。k*の測定温度 と加熱前の圧縮強度に拘わらず、残存圧縮強度と熱伝導率との間に 高い相関関係があることが認められた。

図9に示す残存圧縮強度と熱伝導率の関係をモデル化すると、式 (3)が得られた。

$$\ln F_c = a \ln k * + b \tag{3}$$

ここに、*k**: コンクリートの室温または 110℃の熱伝導率(W/m・K)、 *F_c*: コンクリートの残存圧縮強度(MPa)、*a*, *b*: 定数

表 3	加熱温度およ	び加熱後の	圧縮強度と	熱伝導率
-----	--------	-------	-------	------

加熱温度(℃)		供試体	C1	C2	C3
(深さの仮定)	$F_c, k^*(W$	//m•K)			
	Г	供試体 実測値 推定値 第次値 推定誤差(%) 25℃ (実測値 推定値 37 推定誤差(%) 18 25℃/110℃ 0.3 実測値 推定値 17 推定誤差(%) 25℃/110℃ 0.3 実測値 推定値 17 推定誤差(%) 25℃/110℃ 0.3 実測値 推定値 17 推定誤差(%) 5 25℃/110℃ 0.3 実測値 18 25℃/110℃ 0.3 実測値 16 25℃/110℃ 0.3 実測値 16 25℃/110℃ 0.3 実測値 16 25℃/110℃ 0.3 実測値 17 推定誤差(%) 5 25℃/110℃ 0.3 実測値 17 18 25℃/110℃ 0.3 実測値 17 18 25℃/110℃ 0.3 実測値 17 18 25℃/110℃ 0.3 実測値 18 25℃/110℃ 0.3 実測値 17 18 25℃/110℃ 0.3 実測値 17 18 25℃/110℃ 0.3 実測値 17 18 25℃/110℃ 0.3 実測値 17 18 25℃/110℃ 0.3 実測値 17 18 25℃/110℃ 0.3 実測値 17 18 25℃/110℃ 0.3 実測値 16 25℃/110℃ 0.3 実測値 16 25℃/110℃ 0.3 実測値 16 25℃/110℃ 0.3 実測値 16 25℃/110℃ 0.3 実測値 16 25℃/110℃ 0.3 実測値 16 25℃/110℃ 0.3 実測値 16 25℃/110℃ 0.3 実測値 16 25℃/110℃ 0.3 実測値 16 25℃/110℃ 0.3 実測値 16 25℃/110℃ 0.3 実測値 16 25℃/110℃ 0.3 実測値 16 25℃/110℃ 0.3 実実測値 16 25℃/110℃ 0.3 実実測値 16 25℃/110℃ 0.5 25℃/110℃ 0.5 25℃/110℃ 0.7 25℃/110℃ 0.7 25 25℃/110℃ 0.7 25 25℃/110℃ 0.7 25 25 25 25 25 25 25 25 25 25	32.1	57.6	40.4
未加熱	Γ_c	推定值	供試体 K) C1 C 実測値 32.1 5 推定値 53.4/- 60 定誤差(%) 66/- 4 25°C 0.93/- 0.0 実測値 31.3 5 推定値 37.1/33.1 53.4 定誤差(%) 18.5/5.8 -6.6 5°C/110°C 0.89/1.01 0.92 実測値 29.2 5 推定値 30.6/29.6 51.2 5°C/110°C 0.87/0.98 0.92 実測値 24.6 4 推定値 17.3/23.6 43.4 定誤差(%) -29.7/-4.1 -4.2 5°C/110°C 0.82/0.93 0.89 実測値 16.9 3 推定値 16.1/16.8 32.7 5°C/110°C 0.82/0.86 0.85 実測値 10.9 2 推定値 5.3/10.1 29.2 定誤差(%) -51.3/-7.3 24.3 5°C/110°C 0.72/0.76 0.83 実測値	60.1/-	49.4/-
(19.5cm)	(MPa)	推定誤差(%)	66/-	C2 .1 57.6 4/- 60.1/- /- 4.3/- 3/- 0.94/- .3 57.2 33.1 53.4/55.1 /5.8 -6.6/-3.7 1.01 0.92/1.12 .2 52.1 29.6 51.2/51.5 0.98 0.92/1.10 .6 47.6 23.6 43.4/39.9 /-4.1 -4.2/-7.7 0.93 0.89/1.02 .9 32.6 16.8 32.7/31.9 0.86 0.85/0.96 .9 23.5 10.1 29.2/29.7 /-7.3 24.3/26.4 0.76 0.83/0.94 4 14.8 8.9 23.2/22.3 /-5.3 56.8/50.7 0.74 0.80/0.86	22.3/
	<i>k</i> *	25°C	0.93/-	0.94/-	1.01/-
		実測値	31.3	C2 57.6 60.1/- 4.3/- 0.94/- 57.2 1 57.2 1 57.2 1 57.2 1 6.6/-3.7 01 0.92/1.12 6 51.2/51.5 78 0.92/1.10 47.6 .6 43.4/39.9 .1 -4.2/-7.7 .3 0.89/1.02 32.6 .8 .8 32.6 .8 32.6 .8 32.6 .8 .3 24.3/26.4 76 0.83/0.94 14.8 23.2/22.3	39.3
150	F_c (MPa)	推定値	37.1/33.1	53.4/55.1	40.1/65.5
(16.5cm)	(1.11 u)	推定誤差(%)	18.5/5.8	-6.6/-3.7	2.0/66.7
	<i>k</i> *	25°C/110°C	0.89/1.01	0.92/1.12	0.98/1.07
200	F_{c}	実測値	29.2	52.1	35.7
300	(MPa)	推定値	30.6/29.6	51.2/51.5	35.5/35.5
(13.5cm)		25°C/110°C	0.87/0.98	0.92/1.10	0.96/0.99
		実測値	24.6	47.6	31
400	F_c (MPa)	推定値	17.3/23.6	43.4/39.9	28.2/29.9
(10.5cm)	(1.11 u)	推定誤差(%)	10° $3.3.4/^{\circ}$ $30.1/^{\circ}$ $\underline{E}(\%)$ $66/^{\circ}$ $4.3/^{\circ}$ C $0.93/^{\circ}$ $0.94/^{\circ}$ \underline{Id} 31.3 57.2 \underline{Id} $37.1/33.1$ $53.4/55.1$ $\underline{E}(\%)$ $18.5/5.8$ $-6.6/^{\circ}-3.7$ 10° $0.89/1.01$ $0.92/1.12$ \underline{Idt} 29.2 52.1 \underline{Idt} $30.6/29.6$ $51.2/51.5$ 10° $0.87/0.98$ $0.92/1.10$ \underline{Idt} 24.6 47.6 \underline{Cdt} $17.3/23.6$ $43.4/39.9$ $\underline{E}(\%)$ $-29.7/^{-4.1}$ $-4.2/^{-7.7}$ 10° $0.82/0.93$ $0.89/1.02$ \underline{Idt} 16.9 32.6 \underline{Edt} $16.1/16.8$ $32.7/31.9$ 10° $0.82/0.86$ $0.85/0.96$ \underline{Idt} 10.9 23.5 \underline{Cdt} $5.3/10.1$ $29.2/29.7$ $\underline{E}(\%)$ $-51.3/^{-7.3}$ $24.3/26.4$ 10°	-9.0/-3.5	
	<i>k</i> *	25°C/110°C	0.82/0.93	0.89/1.02	0.92/0.97
500	F_{c}	実測値	16.9	32.6	25.8
500 (7.5cm)	(MPa)	推定値	16.1/16.8	32.7/31.9	25.8/26.7
(7.5011)	<i>k</i> *	25°C/110°C	0.82/0.86	0.85/0.96	0.91/0.95
		実測値	10.9	23.5	18.7
600	F_c (MPa)	推定値	5.3/10.1	29.2/29.7	19.4/17.7
(4.5cm)	(1.11 u)	推定誤差(%)	-51.3/-7.3	24.3/26.4	3.7/5.3
	<i>k</i> *	25°C/110°C	0.72/0.76	0.83/0.94	0.87/0.91
		実測値	9.4	14.8	11.4
700	F_c (MPa)	推定値	4.3/8.9	23.2/22.3	7.1/4.2
(1.5cm)	(推定誤差(%)	-54.3/-5.3	56.8/50.7	-37.7/-63.2
(1.5cm)	<i>k</i> *	25℃/110℃	0.71/0.74	0.80/0.86	0.74/0.76

注:推定値と推定誤差では左の値は 25℃の k*によるものであり、 右の値は 110℃の k*によるものである

高強度コンクリート(C2)の場合でも、図9に示すように、k*と F_cの間に良好な相関関係があり、上記のモデル式は成立する。

5. 火害の深さ方向における強度分布の推定方法

5.1 推定方法

コンクリートの残存圧縮強度と熱伝導率の高い相関関係を利用して、加熱後のコンクリートの熱伝導率を測定することによって、残存圧縮強度および火害の深さ方向における分布を推定することが可能である。しかし、図4に示すように、熱線法による熱伝導率の測定結果は、センサーの放置場所によって異なるため、コンクリートの切断面に適用し難しいため、残存圧縮強度の推定には、本報で提案した熱伝導率測定法により、推定手順を以下のように提案する。 ステップ1:キャリブレーションを行い、F_c-k*関係モデル式(3)中の定数 a, b を確定する。

コンクリート部材の健全部から直径が 100mm であり、長さが 28cm以上(1本円柱と2枚円板供試体を作製するために)であるコ アを6本採取して、サイズが¢100×200mmの円柱圧縮強度用供試体 6本、およびサイズが¢100×30mmの円板熱伝導率測定用供試体 6

図9 残存圧縮強度の対数と熱伝導率の関係

表 4	キャ	IJ	ブ	レーシ	Ξ	ンに	よっ	って得	られた	$F_c -$	k'
-----	----	----	---	-----	---	----	----	-----	-----	---------	----

	関係式の定数αとbの値										
->>	コンカリート	C1 C2			22	C3					
		25°C	110°C	25°C	110°C	25°C	110°C				
	а	9.24	4.19	5.92	3.44	6.07	7.87				
	b	4.66	3.46	4.45	3.62	3.82	3.65				

ペア(12 枚)を作製する。

次に、6本の圧縮強度用供試体と6組の熱伝導率測定用供試体を2 組に分け、それぞれ300℃と500℃の高温に加熱する。高温の保持時 間は、火災継続時間と同等にする。加熱後に、乾燥状態でそれぞれ

圧縮強度と熱伝導率を測定し、平均値を取る。含水の影響を排除す るために、熱伝導率の測定温度は110℃を薦める。

さらに、得られた *Fc* と *k**の平均値を式(3)に代入して、連立方程 式を解き、定数 *a*, *b* を求める。

ステップ2:火害部のコンクリートの熱伝導率を測定する。

コンクリート部材の火害部から、直径が¢100のコアを6本採取す る。コアの長さは、部材を貫通するまでとする。次に、厚さが30mm の円板熱伝導率供試体を作製して、受熱面から順番に番号をつける。 さらに、各コアから作製した円板熱供試体を深さごとに3ペアにし、 熱伝導率を測定して三つの測定値の平均値を求める。測定温度はキ ャリブレーションの測定温度と同じにする。

ステップ3:火害部の残存圧縮強度と分布を推定する。

ステップ2で得られた熱伝導率を式(3)に代入して、深さごとの残存圧縮強度を算出する。

5.2 推定例

上記の推定方法を検証するために、本来、コンクリート部材を製作・加熱し、コアを採取して供試体を製作すべきである。しかし、 大寸法の部材を加熱する設備が不備であるため、本研究では 3.1 節 に述べた円柱圧縮供試体を利用して検証を行った。

表3に示す300℃と500℃の加熱を受けたコンクリートC1,C2,C3の圧縮強度と熱伝導率を式(3)に代入して、3シリーズのコンクリートの F_c -k*関係式中の定数を表4に示すようにそれぞれ求めた。

次に、加熱後の熱伝導率を式(3)に代入して、加熱温度ごとの残存 圧縮強度が得られた。実際の火災加熱では、コンクリート部材は、 深さによって受熱温度が異なる。供試体の加熱温度の変化を火害の 深さに伴う受熱温度の変化に相当するとしたら、計算で得られた各 残存強度は、火害の異なる深さにおけるものと考えている。各加熱 温度が対応する火害の深さは、表3に示すように仮定する。

加熱後の残存強度推定値と実測値を表3に併記する。図10に、仮定 の火害の深さに伴う残存圧縮強度と推定強度を示す。150~600°Cの加熱 温度範囲では推定値と実測値は近く、提案した方法で強度分布を推定し うると思われる。各加熱温度の推定誤差にばらつきがあるのは、コンク リートの構成材料(例えば、調合が同じであっても、作製した円板供 試体中の骨材量が必ずしも一致ではない)による影響の他、表3に示 す k*は1ペア(2 枚)の供試体による測定値であり、測定誤差が大きいためであると考えている。

表3に示すように、C2-600℃(26.4%)とC3-150℃(66.7%)を除き、 他の *k**を用いた残存強度の推定誤差は、10%以下であった。残存圧縮 強度の推定精度は、*k**の測定精度およびキャリブレーションの精度 に強く依存するため、定数 *a*, *b* の確定および *k**の測定には3ペア以 上の供試体の *k**の平均値を利用したほうがよい。3ペア以上の供試 体の *k**の平均値を利用すれば、残存圧縮強度の推定誤差を10%以内に 抑えることが可能である。

6. まとめ

本報では、コンクリートの熱伝導率を簡易に測定する方法を考案 し、高温加熱を受けたコンクリートの熱伝導率と加熱温度の関係を検 討した。加熱温度の増加に伴って、熱伝導率は小さくなり、熱伝導 率と深さの関係曲線より、火害の深さを推定できる。

また、残存圧縮強度と熱伝導率の関係を考察した。残存圧縮強度 と熱伝導率の間に高い相関関係があり、熱伝導率が大きいほど残存 圧縮強度は大きい。この相関関係を利用して、火災後のコンクリー トの残存圧縮強度の推定方法を提案した。今回の実験結果より、提 案した手法は、150~600℃の加熱温度に適用可能である。

今後、広範囲の強度等級のコンクリートおよび各種の原材料を利 用したコンクリートを対象として実験を行い、残存圧縮強度の推定 精度および適用温度範囲を詳細に考察する。また、小径(φ25mm) の円板供試体による熱伝導率を利用して残存圧縮強度を推定する可 能性を検討する予定である。

参考文献

- 阿部武雄ほか:高温度における高強度コンクリートの力学的特性に関する基礎的研究,日本建築学会構造系論文集,No.515,pp.163-168,1999.1
- 2) 西垣大郎ほか:超高強度コンクリート(F。100N/mm²クラス)を用いた RC 構造の耐火性、日本建築学会大会学術講演梗概集(関東), A-2, pp.20-210, 1997.9
- 3) 土木学会:コンクリート構造物の耐火技術研究小委員会報告ならびにシンポジウム論文集,コンクリート技術シリーズ 63, pp.35-38, 2004
- Y. X. Lee, and K. Willam : Properties of concrete after high-temperature heating and cooling, *ACI Materials Journal*, Vol. 105, No.4, pp.334-341, 2008
- C. Poon, S. Azhar, M. Anson, and Y. Wong : Strength and durability recovery of fire-damaged concrete after post-fire-curing, *Cement and Concrete Research*, Vol.31, pp.1307-1318, 2001
- 6) 田嶋仁志:シールド RC セグメント構造の耐火技術と設計、コンクリート 工学、Vol.45, NO.9, pp61-66, 2007.9
- 7) T. Harada, J. Takeda, S. Yamane, and F. Furumura : Strength, elasticity and thermal properties of concrete subjected to elevated temperatures, *Concrete for Nuclear Reactors*, Detroit SP 34, ACI Special Publication, pp.377-406, 1972
- 一瀬賢一・川口徹・長尾覚博・河辺伸二:高温加熱を受けた高強度コンクリートの強度回復、コンクリート工学年次論文集, Vol.25, No.1, pp. 353-358, 2003
- 9) 日本建築学会:建物の火害診断及び補修・補強方法, pp.11-15, 2004
- 10) 大村高弘:広い温度範囲における各種測定方法による断熱材の熱伝導率 比較,ニチアス技術時報, No. 3, pp.6-15, 2007
- 田坂太一:環境に配慮した建材の試験・評価-省エネルギー型建材,建材 試験情報,No.1, pp.26-26,2009
- 12) 村田二郎ほか: コンクリートの科学と技術, 山海堂, p.157, 1996.
- 13) 恩村定幸ほか: 強度の異なるコンクリートの熱・湿気物性, GBRC, (財) 日本建築総合試験所, Vol.30, No.119, pp.24-32, 2005.1
- 14) 金子林爾:含水量の異なるコンクリートの圧縮疲労特性について、コン クリート工学年次論文集, Vol.2, pp.321-324,1980

[2011年2月18日原稿受理 2011年4月12日採用決定]