Environmental Performance of Concrete: Definition and Assessment Methodology *Zhuguo Li*

Graduate School of Science and Technolgy for Innovation, Yamaguchi University, Japan

1. Introduction

Waste utilization: blast furnace slag, fly ash, silica fume, clopper slag, recycled agregates, waste incineration ash, •••
 Admixture utilization: water reducer, AE agent, shrinkage reducing agent, viscosity modifiying agent, rust inhibitor, synthetic fibers, bacteria, •••

Low-carbon binders: blended cements, geopolymer or alkliactivated materials, • • •

New construction method: self-compacting, 3D printing, • • •

2. Definition & Calculation of Environmental Performance

 Environmental impacts (EI) *For representing environmental* Concrete amount Environmental burden (EB) adaptability of concrete Category endpoint Safeguard subjects Impact category Inventory • Function unit: m³×<u>TP</u>×*Life span* _____ • Human Global warming CO_2 Thermal stress Environmenta he Public assets SO Acidification Malaria Integrated TPs for a comparison of impact NO_x biodiversity Air pollution egetation chan Resource use **Bio-diversity** primary production capacity Resource different concretes Waste consumption Land use discharge Land use Waste discharge • <u>EP definition</u>: Environmental Impact (EI) per year of ×EB's environmental impact intensity

High performance concerete
Special concrete with new functions
virgin resource-saving concrete

Need to

Confirm they're really eco-friendly concretes.
 Compare the environmental friendliness of concretes with different technical performances (TPs).
 Design the concrete that meets TP requirements and maximizes environmental friendliness.

Environmental performance (EP) assessment is required

3. Assessment Examples of Concrete EP

Raw materials, mix proportions and technical performances of concretes

the life cycle of concrete with unit volume (m³) and required TPs.

EP indicator: $EPI = \frac{EI \ indicator/(m^3 \cdot year)}{TP \ indicator}$

• **EI Indicator** *EII* = $\sum_{m} [(M_m \times I_{pm}) + (\frac{M_m}{1000} \times D_m) \times I_t] + I_{po}$

where

- M_m : Amount of raw material m in concrete of $1m^3$ (kg),
- I_{pm} : **EI intensity** of producing raw material *m* (1/kg),
- \dot{D}_m : Transportation distance of raw material or concrete, or waste (km),
- I_t : **EI intensity** of transportation (1/t·km),
- I_{po} : **EI intensity** of processes (mixing, pumping, casting, curing, demolishing, etc., $1/m^3$)

• EI of service phase:

Number of repairing × EI in other phases (production,

construction, and demolition/disposal) $\times 3\%$

Class of life span	Life span (years)	Period without major repairing (years) based on JASS5:1997	Number of repairing
Short term	30	30	0
Standard	65	30	1
Long term	100	65	1

Benefits of waste use: not disposing waste in final landfill:

- Decrease of natural source consumption, energy use and emissions
- Decrease of Lang use change
- Increase of CO_2 uptake of forest or ocean

where i : EB item, E_{vi} : Amount of EB item i (e.g. CO₂) caused by the acquisition or production of raw material m

 E_{wi} : Amount of EB item *i*, caused by the disposal of the wastes used for producing raw material *m*

 F_i : Integrating factor of EB item i

Integrating factor F_i of EB items (Source: LIME 2)

EB	category	Atmospheric emissions									Waterborne releases			gy reso sumpt	ource tion	Habitat Loss	Solid wastes	
EB item		CO ₂ (kg)	SO _x (g) (Spot)	NC Spot	$\mathbf{D}_{\mathbf{x}}(\mathbf{g})$	CH ₄ (g)	N ₂ O(g)	PM Spot	2.5(g) Linear	COD(g)	T-N (g)	T- P (g)	Oil (kg)	Coal (kg)	Natural gas(kg)	Land use change (m ²)	Landfill disposal(kg)	
npact	Mean value	2.77	4.071)	0.60	1.93	7.33 E-02	0.87	8.20	90.5	6.40 E-04	8.25 E-02	0.97	3.18	22.9	1.45	6.94 E+4 ¹⁾	20.1 ²⁾ , 16.9 ³⁾ , 14.1 ⁴⁾ , 13.6 ⁵⁾ , 20.1 ⁶⁾ , 30.5 ⁷⁾	
tensity- /kg, g)	Standard deviation	1.64	7.461)	2.02	14.68	4.36 E-02	0.52	28.20	298.0	-	-	-	1.81	118.0	1.26	6.94 E+5	$12.2^{2}, 9.7^{3}, 8.3^{4}, 9.5^{5}, 14.3^{6}, 27.0^{7}$	

	Type and amount of cement			Blended	Coar	AE	Technical performances				es												
Mix			Water		Туре	and	A	water reducer	Sl	4	F	⁷ c	DC										
code				Sanu	Water absor	rption(%)	Amount			A	28d	91d	DS	CR									
B-SC02	Slag			741	Limestone	0.22		1.905	19.5	4.1	42.6	50.0	560	3.54									
B-SR23	cement (B type)	381	- 185	709	RCA (Grade H)	2.18	1000		20.0	4.2	38.7	54.8	780	2.43									
B-SR56				628	RCA (Grade L)	5.82			16.0	4.3	37.4	48.7	860	3.15									
N-SC02				103	103	103	105	105	105	105	105	100	746	Limestone	0.22	1000		19.5	4.5	40.4	47.2	570	1.43
N-SR23	Portland cement	378		711	RCA (Grade H)	2.18		1.890	19.5	4.7	41.2	47.6	830	0.95									
N-SR56				606	RCA (Grade L)	5.82			15.5	5.7	35.2	40.8	960	1.98									
[Notes]																							

1) Data source: H. Takeuchi, et. al., Durability of recycled aggregate concrete for expanding its application, Proc. of the Japan Concrete

3) Sl is slump (cm), A is air content (%), Fc is compressive strength at 28 day or 91 days (MPa), DS is drying shrinkage at 6-month age

analysis from the relationship charts between the carbonation depth and the accelerated carbonation period.

2) Blended sand was a blend of recycled fine aggregate and mountain sand in a ratio of 3:7 by mass.

($\times 10^{-6}$), and *CR* is Carbonation rate factor (mm/ $\sqrt{\text{week}}$)

Institute, 30(2), 373-378, 2008, but types of aggregates were supposed, and the carbonation rate factors were obtained by regression

Super-long term	200	100	1

[Note] JASS 5: Japanese Architectural Standard Specification- Reinforced Concrete Works

[Notes] 1) in case of quarrying soil or rock, 2) Incineration ash, 3) Cement solid, 4) Molten slag, 5) Slag, 6) Dust, 7) Unclear

Estimation of life span: JASS5(2015)

regulation	^{IS} (1) (Concre	tes af	fected b	y othe	er than	n salt :	attacl	K		(2)	Concretes sub	jected to	o salt attac	ek
91-day Compressive		Ligh-v	weight crete	Intense	Concrete	Recycled	d aggrega	te (RA) co	oncrete	Concrete	91-day Compre	essive strength(N/mm ²)	Environment	Min. cover	Life span
strength	General environment	Type 1	Tupo 2	freeze-thaw	with Eco-	RA: ga	ade H	RA: g	grade M	without	Portland cemer	nt Slag cement (type B))	thickness(mm)	1
(N/mm ²)		Type I	Type 2	environment		Type 1	Type 2	Type 1	Type 2	Tebars	36	33	Solt domogo	50	
18	Short term (30 years)	Short	Short		Short	Short	Short	_	_	Short	33	30	San uamage	60	Short term (30 years)
21			_	Short	_	_	_	Short	Short	_	30	24		40	
24	Standard (65years)	Standard	Standard	-	Standard	Standard	Standard	-	-	-	24	21		50	
27								Standard	Standard		36	33		40	Ctandard
27	-	-	-	Standard	-	_	-	2)	2)	-	33	30	Quasi-sait	50	Standard (65years)
30	Long term (100 years)	I ong term		_	_	I ong term	Long term	_	_		30	24		60	(05ycars)
50	Long term (100 years)										36	33		50	Long term
36	Super-long term (200 years) ¹	-	-	-	-	-	-	-	-	-	33	30		60	(100 years)

[Notes] 1) limited to Portland cement, 2) apply in locations where drying shrinkage is not required.

• TP indicator: Integration of technical performances

(1) Absolute integration - Common performance items, criteria values and weight factors → TPIa

Darformanaa	Inda	TPI a					
Performance	mae	Test result	Score	Scoring method			
	S 1	Sl, if Sl<21cm			$=(S1./26) \times 100$		
Workability (W)	Sf	or Sf<40cm Sf. in other cases.			$= (Sf./600) \times 100$		
	Sagragat	ion registence (vigual			No correction NS: 0: Slight cogregation		

Negative EI expresses that environmental protection benefits resulted from waste use.
B-SR23 has the smallest EI, but B-SR56 has the best EcoPoin t (largest negative value).

4. Summary

- To compare the EPs of different concretes, the function unit of LCA should include TP and service life.
- To assess the EP of concrete using recycling materials, EBs from landfill of waste (CO₂, land use change, etc.) should be deducted.
 EPI proposed in this study essentially indicates the eco-efficiency of concrete. When doing mix design, select the mixture that satisfies the TPs, but has a smaller EcoScore.

(2) Relative Integration - Rater selects performance items, sets target values and weight factors for the selected performances
 → TPIr

EcoPoint and EcoScore

 $EcoPoint = \frac{EII_a/(m^3 \cdot year)}{TPI_a}$

EIIa assessment considers the specified EB items: CO_2 emission, oil/coal/natural gas consumption, land use change, and waste disposal.

EcoPoint is used for comparing the environmental performances of different structural concretes.

 $\frac{EII_r/(m^3 \cdot year)}{TPI_r}$ EIIr assessment considers the EB items selected by rater.

EcoScore is used for concrete mix design to achieve the required TPs and the lowest annual EI over the life cycle.